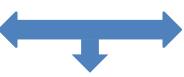

Genome wide association and genomic selection to speed up genetic improvement for meat quality in Hanwoo

Seung Hwan Lee, PhD Hanwoo Experiment Station, National Institute of Animal Science, RDA

National Institute of Animal Science, RDA



Genomic Networking in NIAS, RDA

Genetic Improvement

- National Breeding Program
- Planning, strategy of breeding program
- Development of Breeding tools
- Optimization of Breeding program

Animal Genome & Bioinformatics

- Genome project for Livestock
- Bioinformatics
- Development of Genomic tools
- QTL, GWAS, GS model

Delivery Genomics into Breeding

Hanwoo Experiment Station

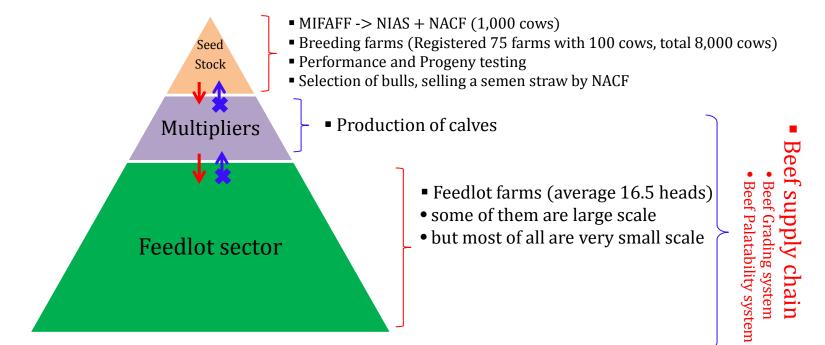
- Evaluation of GS model
- Validation of QTL, GWAS etc
- Line breeding

Statistics for Hanwoo Industry

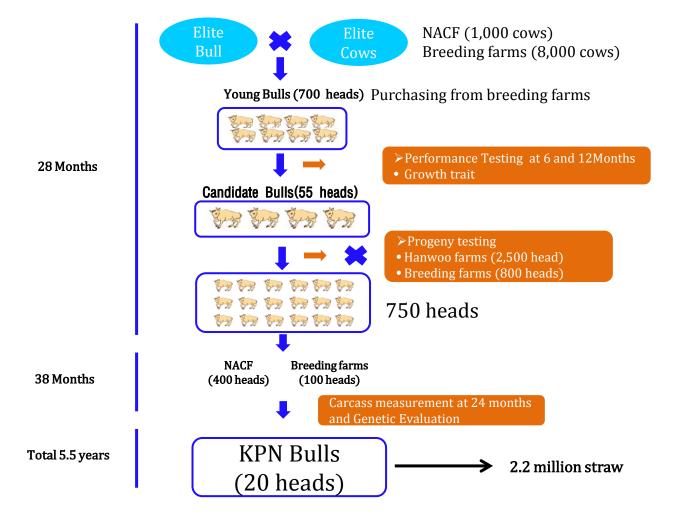
Location	farm	%	Head	%
Whole country	165,420		3,034,812	
Seoul	5	0	108	0
Busan	111	0.07	2,203	0.1
Daegu	1,106	0.67	19,728	0.7
Incheon	423	0.26	15,771	0.5
GwangJu	313	0.19	7,167	0.2
Daejeon	240	0.15	5,902	0.2
Ulsan	1,901	1.15	28,927	1
Gyeonggi	6,940	4.2	212,000	7.3
Gangwon	12,996	7.86	225,899	7.8
Chungbuk	10,114	6.11	184,387	6.3
Chungnam	21,376	12.92	391,808	13.5
Jeonbuk	15,099	9.13	357,163	12.3
Jeonnam	33,607	20.32	521,716	18
Gyeongbuk	35,405	21.4	580,394	20
Gyeongnam	ongnam 25,180 15.22 3		322,142	11.1
Jeju	604	0.37	29,497	1

- 3 million head (total)
- 1.3 million head (Cow)

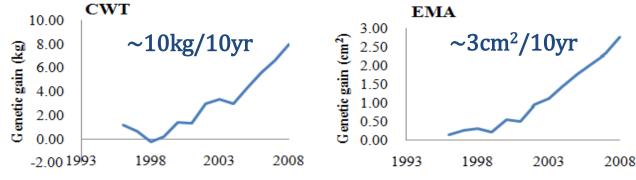
• 165,420 farm



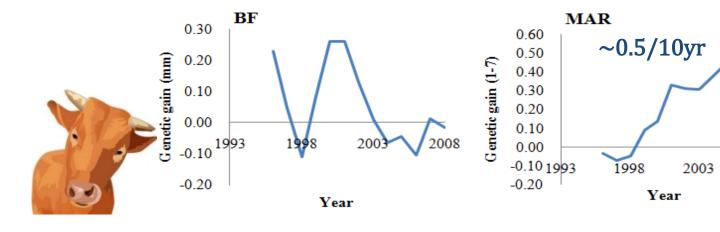
Hanwoo Supply Chain


Government Funding

MIFAFF: Ministry for food, agriculture, Forestry and Fishery NACF: National Agricultural Cooperative Federation NIAS: National Institute of Animal Science KAPE : Korea Institute for Animal Products Quality Evaluation AIAK : Korea Animal Improvement Association

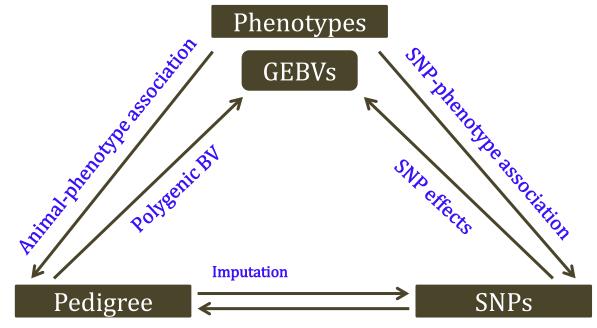


Bull selection in Seed Stock Sector


Trends in Korean Hanwoo Carcass traits It is very successful !!!

Year

2008



What is advantages of genomics in Hanwoo breeding ?

- More genetic gain in a short time
 - Reduce generation interval, Increased EBV
- Effective breeding program
 - Open nucleus system
- Benefit for New traits to breeding program
 - Low heritability traits
 - Traits that are hard to measure(eg, feed efficient etc)
- Benefit for reducing inbreeding
 - Own information rather than family information

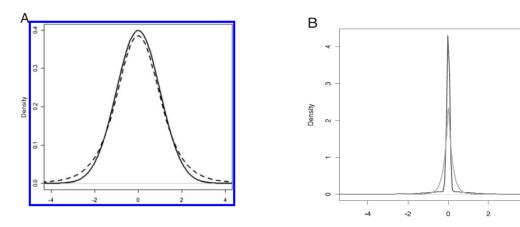
Benefits of SNPs in Animal Breeding

Check/reconstruct pedigree

This talk

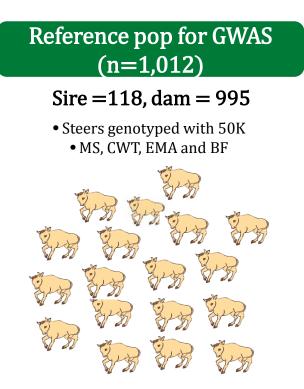
Genetic architecture of carcass traits in Hanwoo

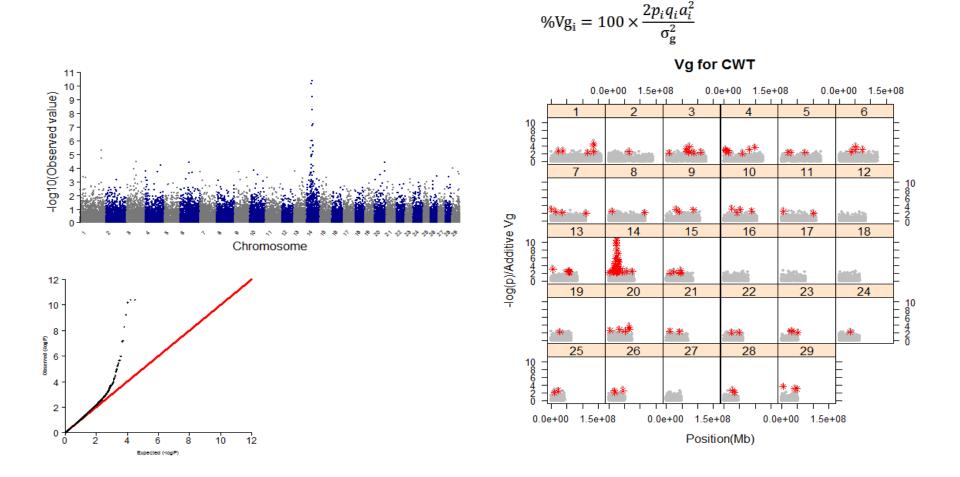
Accuracy of Genomic breeding value


Requirement of accurate GEBV

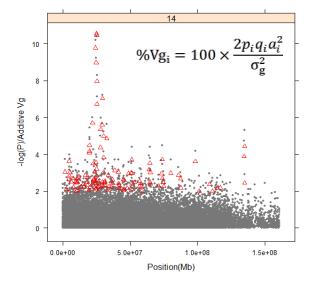
- Effective pop size
- Num of SNPs
- Num of ref. pop size

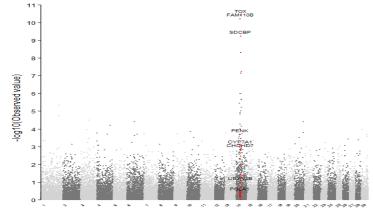
Distribution of gene effects vs Models

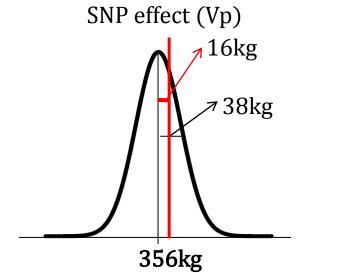

N	D. (Assumed distribution	T
Name	Reference	of SNP effects	Implication
BLUP	Meuwissen et al. (2001)	Normal	A very large number of QTL of small effect
BayesA	Meuwissen et al. (2001)	t distribution	A large number of QTL of small effect and a small proportion with moderate to large effect
BayesB	Meuwissen et al. (2001)	Mixture distribution of zero effects and t distribution of effects	A large number of genome regions with zero effect, a small proportion of QTL with moderate effects
Bayesian LASSO	Yi and Xu (2008)	Double exponential distribution of effects	Very large proportion of SNP with effect of close to zero, small proportion of moderate to large effect
BayesSSVS	Verbyla et al. (2009)	Mixture distribution of zero effects and t distribution of effects	A large number of genome regions with almost zero effect, a small proportion of QTL with moderate effects

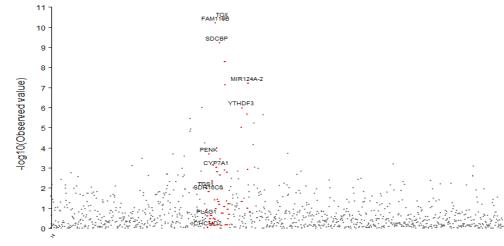

Genome wide association study to understand the Genetic Architecture of carcass traits

• Reference population (n=1,012) consisting of steers from progeny testing:

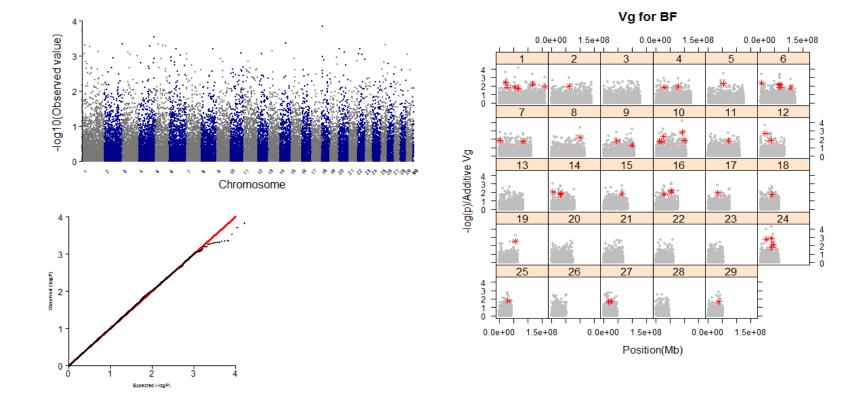



Genome wide association for Carcass weight

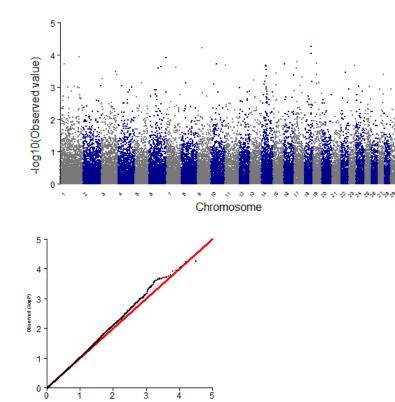



SNP effect (Vg)

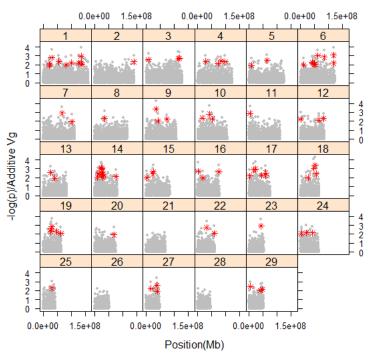
Chromosome



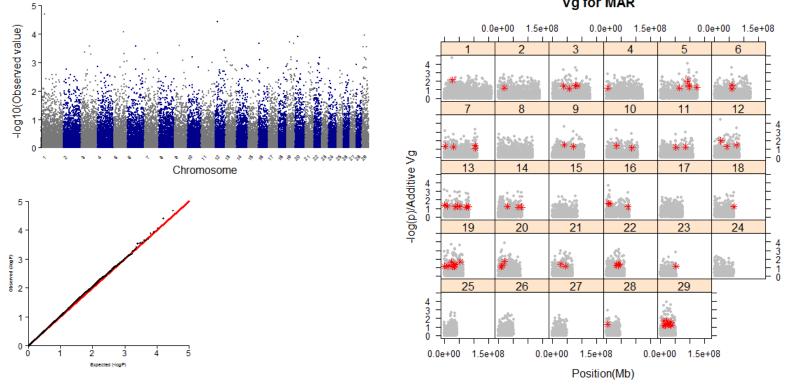
Chromosome



Back Fat Thickness


국립축산과학원

Eye muscle area

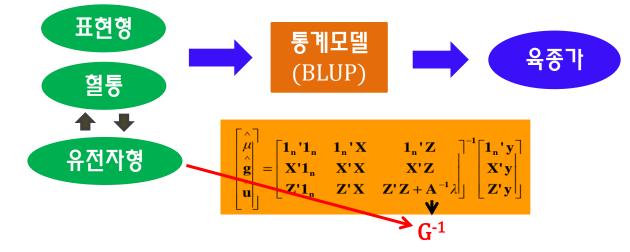

Expected (-logP)

Vg for EMA

·존진흥정 ^{국립축산과학원}

Marbling score

This talk


Genetic architecture of carcass traits in Hanwoo

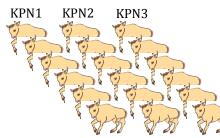
Accuracy of Genomic breeding value

Requirement of accurate GEBV

- Effective pop size
- Num of SNPs
- Num of ref. pop size

$$Var(g) = zz'\sigma_a^2$$
$$Var(g) = G\sigma_u^2$$
$$\sigma_u^2 = 2\sum p_i(1-p_i)\sigma_a^2$$
$$G = \frac{zz'}{2\sum p_i(1-p_i)}$$

GBLUP


Genomic Selection_Prediction of GEBVs Reference pop vs Validation set

<u>Reference population (n=1,011)</u> consisting of steers from progeny testing
<u>Val set 1 (n=106)</u> consisting of KPN bulls of steers in ref pop
Val set 2 (n=178) consisting of progeny without obs
Val set 3 (n=236) consisting of Line breeding in Hanwoo station

Sire =118, dam = 995

Reference pop (n=1,011)

- Steers genotyped by 50K
- IMF, MS, CWT, EMA and BF

Progeny tested pop

Genomic Prediction GBLUP Val set 1(n=106) Candidate bull for progeny

Val set 2(n=178) Progeny without obs

Val set 3(n=236) Bull and female for line breeding in Hanwoo station

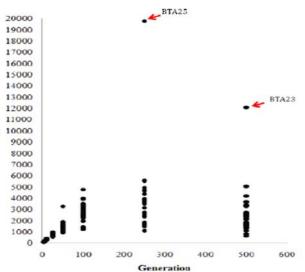
Accuracy of GEBV

Tra	its BLUP	GBLUP	Diff.			
Sire without obs. $(n = 10)$)6)					
EM	1A 0.71(0.12	2) 0.72(0.11)	0.01			
В	F 0.75(0.13	3) 0.76(0.12)	0.01			
М	S 0.75(0.13	3) 0.76(0.12)	0.01			
Progeny without obs.(n=178)						
EM	1A 0.30(0.03	3) 0.35(0.04)	0.04			
В	F 0.32(0.03	3) 0.37(0.04)	0.06			
М	S 0.32(0.03	3) 0.38(0.04)	0.06			
Hanwoo station females without obs. $(n=236)$						
EM	1A 0.11(0.08	3) 0.29(0.07)	0.18			
В	F 0.11(0.08	3) 0.30(0.11)	0.19			
М	S 0.11(0.08	3) 0.27(0.12)	0.16			

This talk

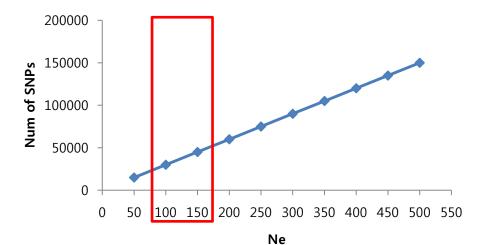
Genetic architecture of carcass traits in Hanwoo Accuracy of Genomic breeding value


Requirement of accurate GEBV


- Effective pop size
- Num of SNPs
- Num of ref. pop size

Linkage disequilibrium vs Effective pop size

		-						
Fragment size (kb)	100	200	500	1,000	2,000	5,000	10,000	15,000
Effective population size (N	Ne)							
Mean	2,743.7	3,905.6	2,748.3	1,487.6	729.4	352	162.5	98.1
Median	2,362.3	3,533.2	2,712.3	1,476.5	718.2	352.2	163.1	96.3
Standard deviation	2,197.1	3,570	836.8	453.8	111.1	22.7	13.7	7.7
Minimum	625.6	1,132.9	1,259.5	925.6	555.7	306.8	137	87.3
Maximum	12,072.6	19,792.8	4,778.4	3,279.6	1,005.7	392.5	188.9	119.3
Linkage distance (cM)	0.1	0.2	0.5	1	2	5	10	15
Generations	500	250	100	50	25	10	5	3

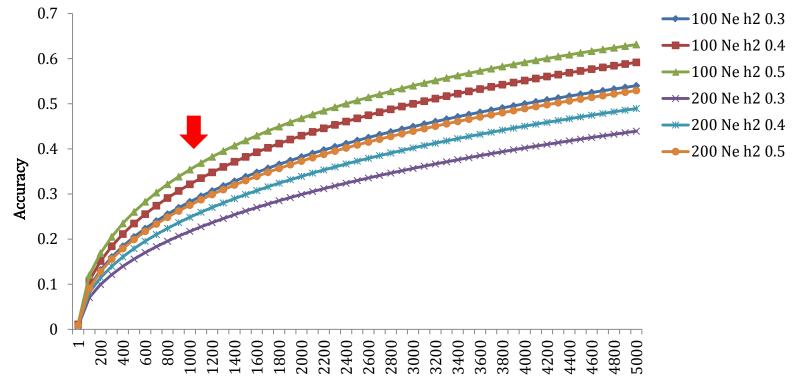


Num of SNPs

• Num of SNPs that is required to get accurate GEBV

10NeL

*Ne : Num of Effective pop. Size, *L : Length of the genome in Morgan



Ref. Pop vs Accuracy of GEBV

Mike Goddard Equation $r = \sqrt{1 - \lambda/(2N\sqrt{a}) * \ln(\frac{1+a+2\sqrt{a}}{1+a-2\sqrt{a}})}$

Number of Reference Population

Summary

- Technically Genomic selection for complex traits w ork well in Dairy cattle and can be used in Hanwoo
 - Very similar breeding scheme
- Reference population
 - Large reference population (Bulls or Steers)
 - Phenotypes involved in Breeding goal
 - Genotypes (50K or 700K)

Research Collaboration with EMBRAPA

- Imputation of whole genome sequence for individual using Key sire group with WGS
 ✓ Development of Bioinformatics system
- Development of statistical model for GS
 ✓ Pipeline for GS model
- Optimization of GS model to Breeding program
 - ✓ Controlling Inbreeding
 - ✓ More genetic Gains
 - ✓ Maintain genetic diversity etc.

