"Probiotic and enzymes development and utilization in Brazil – The importance and challenges for the future"

Everton Krabbe

Korea, 25/March/2013

- Swine Health
- Ambient Control
- Constructions
- Social-Economy
- Vegetal Production
- Etc ...

- Technology Transfer
- External Clients
- Embrapa s Clients
- Etc ...

General research facilities

- Animal health laboratory: virology, bacteriology, anatomyhistopathology, clinic analysis, and molecular genetics
- Physic-chemical analysis laboratory: animal nutrition, environmental impact, and chemical residues
- Experimental farms for pigs and poultry
- Pig and poultry genetic selection farm
- Feed mill
- Experimental unit for metabolic studies
- Pig experimental units with individual cages

Welfare

- Pre-slaughter manegement and meat quality
- Imunocastration
- Reduce mortality trough early nutrition

Economics

- Evaluation of regional competiveness and the effect of public policies on performance of swine and poultry productive chain
- Evolution of swine and poultry production cost in different States and Countries
- Optimal slaughter wt

Nutrition

- Improve efficiency of utilization of corn
- Nutrition management of young animals
- Nutrition management during reproductive phase
- Use of plasma in diets for gestating and lactating sows
- Feed management during growing finishing phases
- Feedstuffs evaluation

Breeding and Genetics

- Mapping swine genomic regions of economical interest
- Estrategies to develop meat quality and performance traits in swine and poultry production

Food Safety

- Development of a swine production system with no antibiotics in the feed
- Ractopamine residues

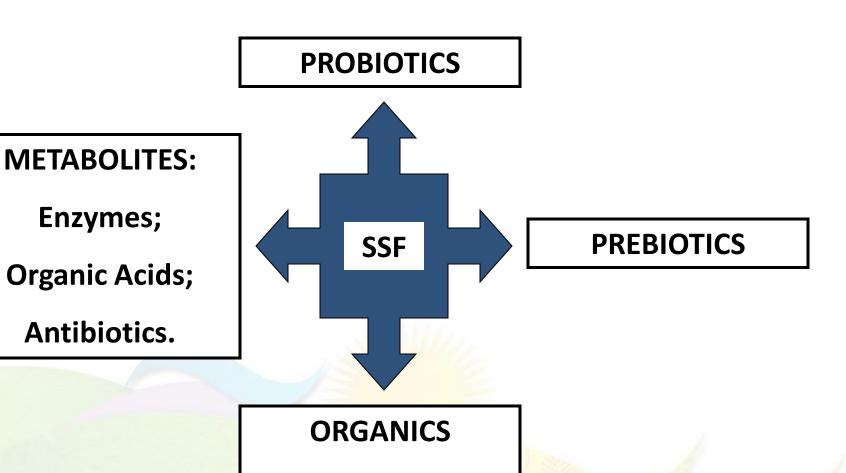
Environment

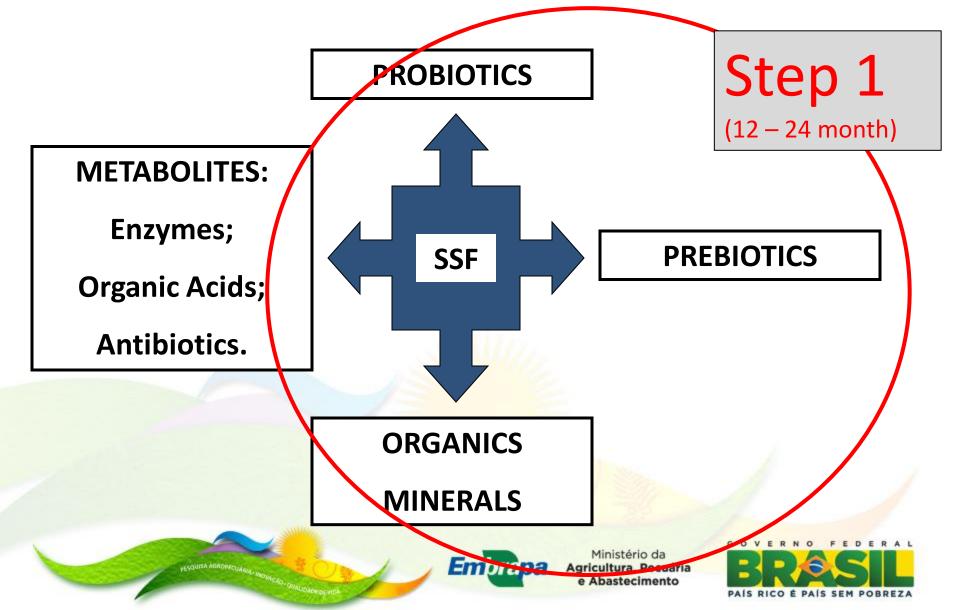
 Nutritional tools to reduce pollutant potential of pig wastes

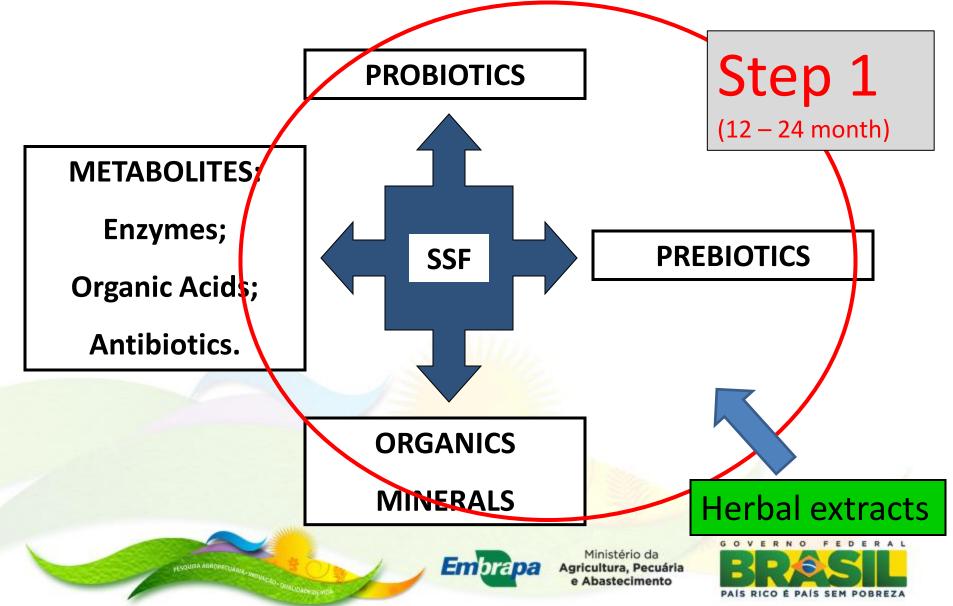
Training / Consulting


- Industrial pig and poultry production
- Swine truck drivers training
- Pre-slaughter welfare training
- Special training for small familiar swine and poultry business
- Feed processing
- Help to organize Ethiopian Swine Production

Chalenges ...


- Production cost reduction
- Reduce labor dependence
- Welfare
- Reduce use of antibiotcs
- Environment and natural resources
- Meat quality
- Production standarts / facilities and equipments
- Reduce Brazilian genetic material dependence





MINERALS

Step 2


(24 - 48 month)

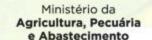
METABOLITES:

Enzymes;

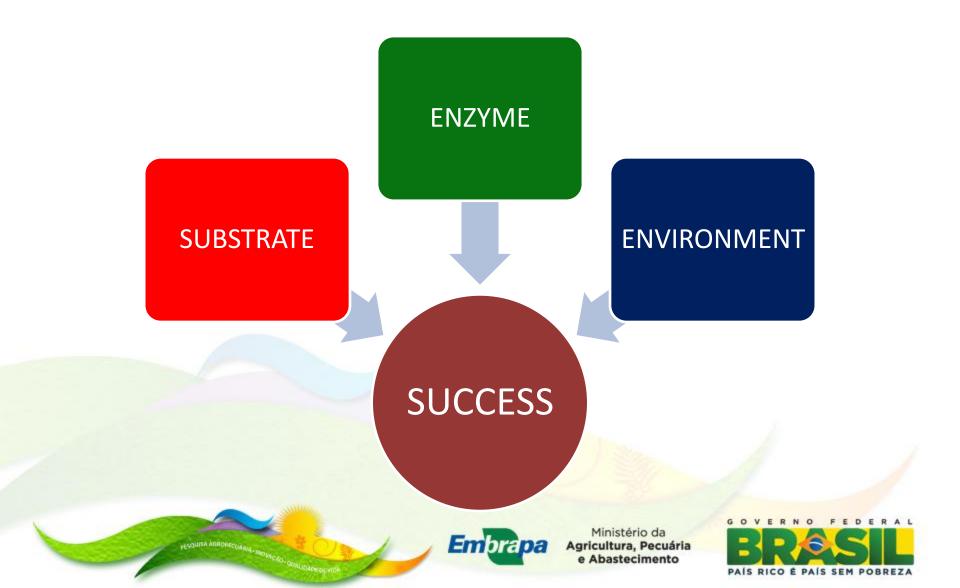
Organic Acids;

Antibiotics.

MINERALS


SUBSTRATES - Perspectives of by-product use and environmental aspects

Enzymes in Animal Nutrition is a fact!


ECONOMICS

Maximization of responses

Searching for key responses:

- 1. Understand much better raw materials;
- 2. Understanding enzymes;
- 3. Understanding the animals;
- 4. Understanding the feed producing process.

Animal deppending aspects

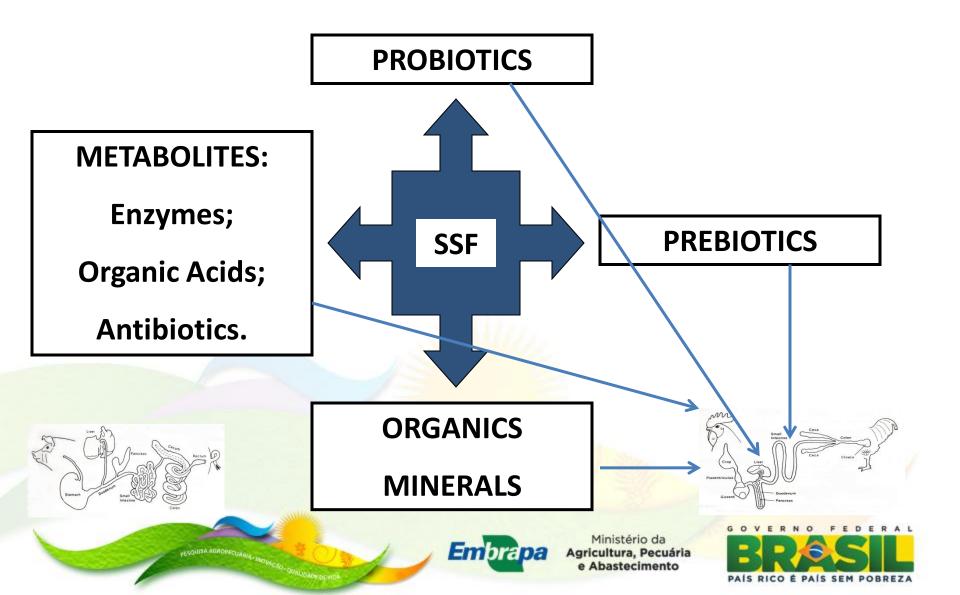
GENETICS

- Fact: During the past 20 years animals improved performance by 30%;
- Question: Actual breeds are in line with enzyme nutritional matrix?

SEX

- Fact: Requirements different for sexes;
- Question: Should we have nutritional matrixes by sex?

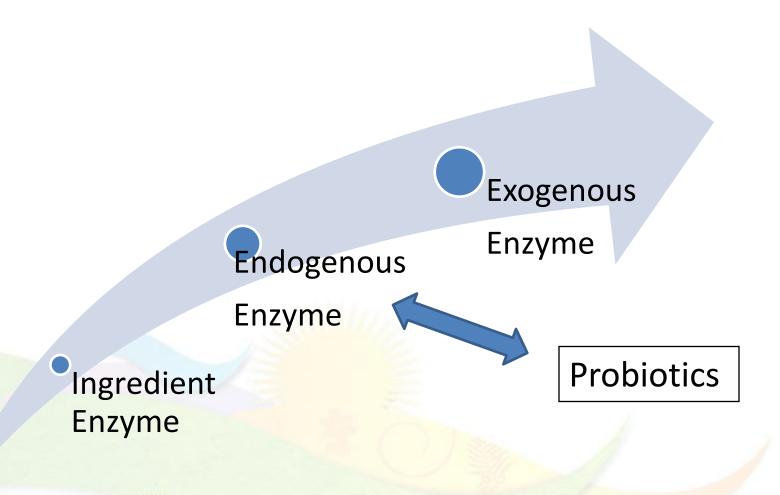
HOUSING


- Fact: Experimental data are generated under perfect environments;
- Question: Do enzymes respond differently under filed condition?

Enzyme sources

Exogenous Enzyme

Endogenous Enzyme


Ingredient Enzyme

Enzyme sources

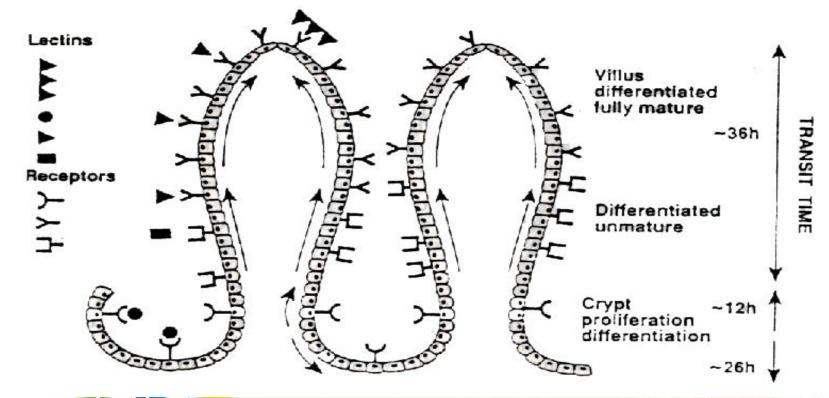
GIT x PHYTASE

CHEMICAL

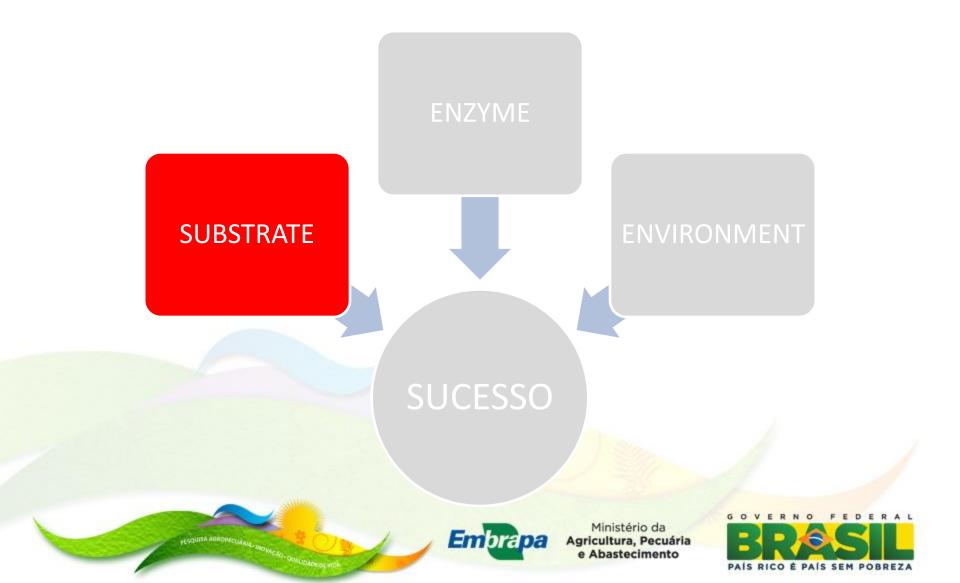
- High Ca decrease action of phytase (Nahapetian e Young, 1980);
- Low P increase the action of alcaline phosphatase (Mohammed et al., 1991);
- Low Zn decrease phytase action (Davies e Flett, 1978);
- High Mg decrease phytase action (Mc Cuaig et al., 1972)

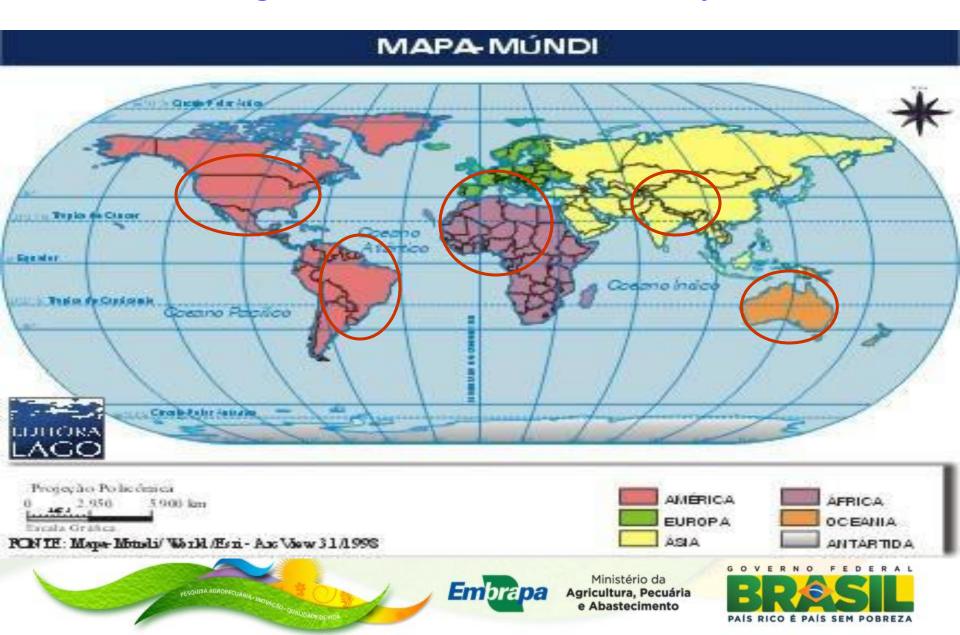
MICROBIAL

- Several spp. of microbes of GIT produce enzymes;
- Endogenous secretion.



Intestinal integrity

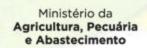




Maximization of response

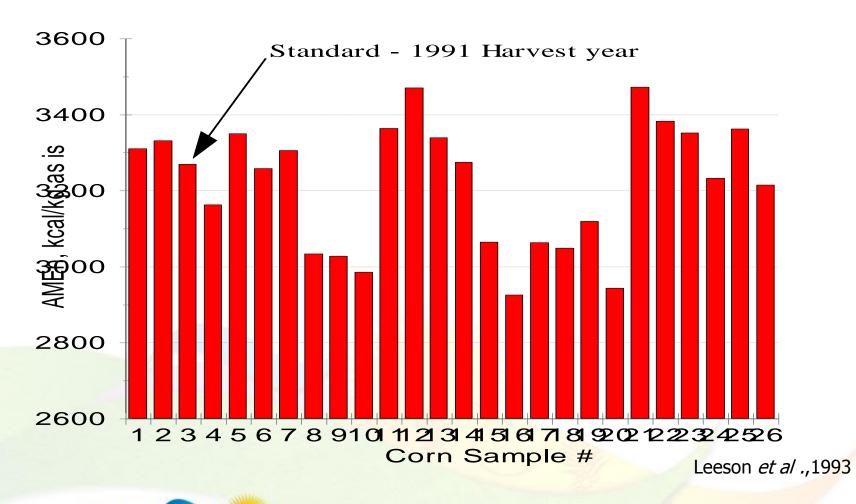
Knowledge about antinutritional components

Composição de diferentes alimentos em polissacarídeos não amiláceos (% MS)


Alimento	Celulose	Arabinose	Xylose	Manose	Galactose	Àc. urônico	B-glucano	Total
Cevada	4,3	2,8	5,3	0,3	0,2	0,4	4,2	17,5
Milho	2,2	2,0	2,7	0,3	0,5	0,7	0,1	8,2
Centeio	1,6	3,6	5,8	0,4	0,4	0,3	1,6	11,0
Sorgo	2,2	2,0	0,9	0,1	0,2	1,3	0,2	6,9
Trigo	2,0	3,1	4,8	0,3	0,4	0,4	0,8	11,8
Canola*	5,9	4,3	1,7	0,4	1,8	4,8		18,9
Soja*	6,2	2,3	1,8	0,9	3,5	3,7		18,4
Girassol*	8,9	2,5	4,0	1,0	1,1	5,3		22,8
Aveia	8,2	1,8	8,0	0,3	0,7	1,0	2,8	22,8
Ervilha	5,3	3,6	1,3	0,2	0,7	3,2		14,3
Algodão*	9,2	3,4	6,0	0,4	1,2	4,5		24,7
Linhaça*	5,3	3,6	6,6	0,4	3,3	6,8		26,7
Glutenose	7,5	6,8	10,4	0,4	1,8	6,6	0,2	33,7

^{*} Farelo

Classen, 1996; Knudsen, 1997; Choct, 1997



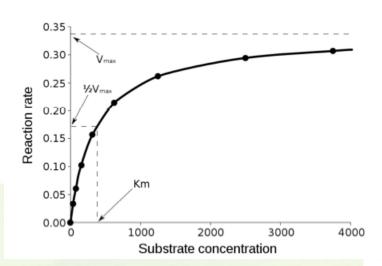


Variability of ME in Corn for broiler Mean= 3218 kcal/kg ± 162

Variability of corn chemical composition (59 samples) (Danisco Animal Nutrition)

Base (MS)	Starch (g/Kg)	CP (g/Kg)	Fat (g/Kg)	Amilose:Amilopect
Mean	674	80,3	44	0,31
SD	23	5,9	4,5	0,05
Min	628	71	34,7	0,21
Máx	720	94,5	52,4	0,44

Cowieson, 2005.

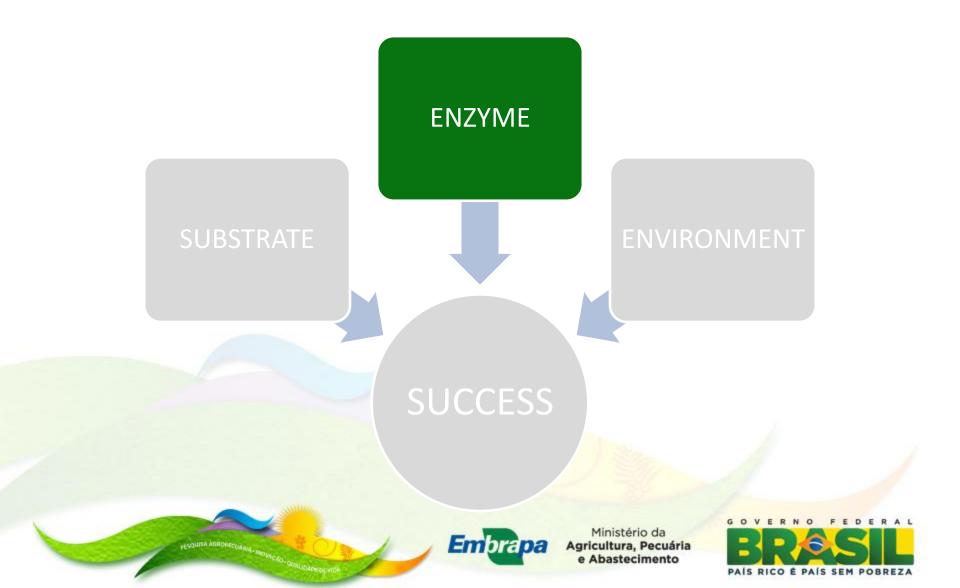


Phytic Acid in Soybean

Paula, S.A. de, 2007 - UFV

Cultivar	Ácido Fítico (%)	
Elite	1,33a	1,33%
Monarca	1,28a	1,3370
CS 02 521	1,27a	
MSOY 7878	1,23a	
CS 02 884	1,22a	
CS 106 RR	1,22a	
Luziania	1,19a	
CS 02 302	1,19a	
CS 179 RR	1,19a	
CS 186 RR	1,18a	
CS 144 RR	1,18a	
CS 02 449	1,18a	
Silvania	1,17a	
MSOY 8585	1,17a	
CS 801	1,17a	
Balisa	1,15b	
CS 02 1026	1,14b	
CS 02 988	1,14b	
CS 73 RR	1,13b	
CS 01 873	1,13b	
Vencedora	1,13b	
CS 01 736	1,12b	
MSOY 8787	1,12b	
CS 132 RR	1,09b	
Garantia	1,09b	
CS 821	1,08b	
MSOY 8008	1,07b	
Valiosa	1,07b	
CS 33 RR	1,07b	
CS 02 731	1,07b	
CS 02 564	1,07b	
MSOY 8001	1,07b	
CS 95 RR	0,99b	0.020/
CS 206 RR	0,93b	0,93%
	nta a média de três reneticões	

Cada resultado representa a média de três repetições.


Ministério da Agricultura, Pecuária e Abastecimento

ENERGY VALUE (AMEn) OF CORN AND SBM

Maximization of response

Direct-Fed Microbial, Enzyme & Forage Additive Compendium

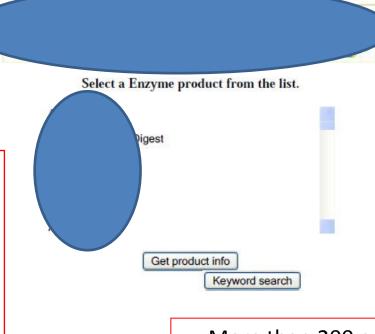
General

- Introduction
- Regulatory environment

Direct-Fed Products

- Bacteria
- Enzyme
- Mold
- · Oligosaccharide
- Yeast

Forage Products


- Silage
- Hay

Waste/Odor Products

Companies


Contact Us

Note to manufacturers

More than 200 enzymes commercially available

PERSPECTIVES FOR THE FUTURE?

Digestibility of NSP

Carboidrato	Aves	Suínos
PNA Total	12	84
Arabinose	13	104
Xilose	14	103
Manose	0	72

Adaptado de Choct e Kocker, 2000.



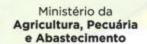
GREAT SEARCH?

Dosing systems of enzymes ajusted in real time to the substrate...

GREAT SEARCH?

Dosing systems of enzymes ajusted in real time to the substrate...

Goal 1. Characterization of substrate "in line" – quali e quantitatively...


GREAT SEARCH?

Dosing systems of enzymes ajusted in real time to the substrate...

Goal 2. Availability of enzymes "in line" – according substrate...

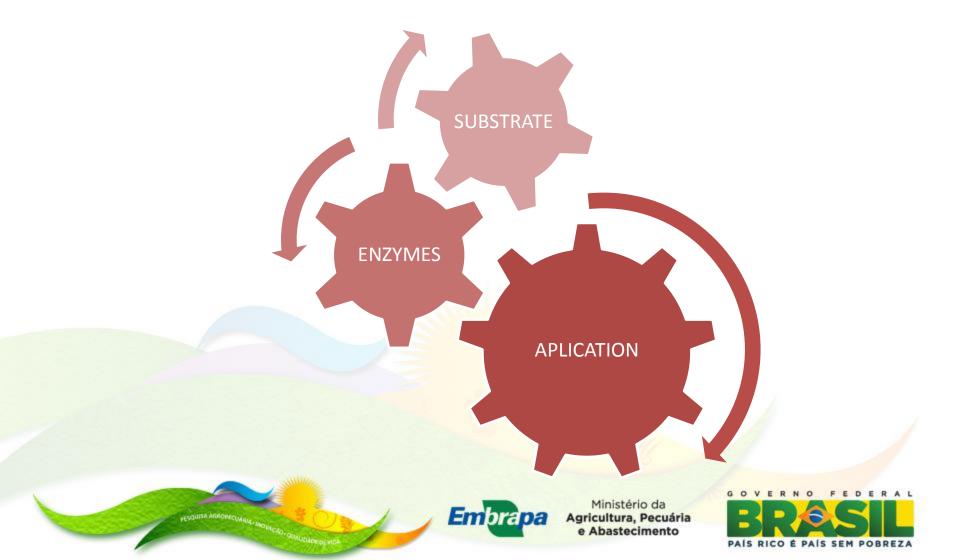
GREAT SEARCH?

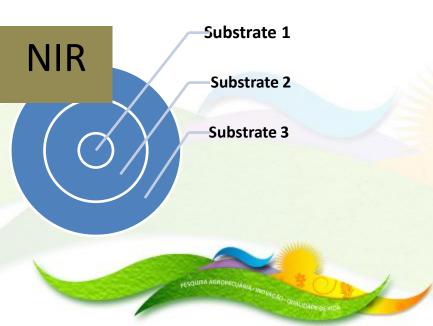
Dosing systems of enzymes ajusted in real time to the substrate...

Goal 3. In line opperating systems – dosing enzymes according substrate.

GREAT SEARCH?

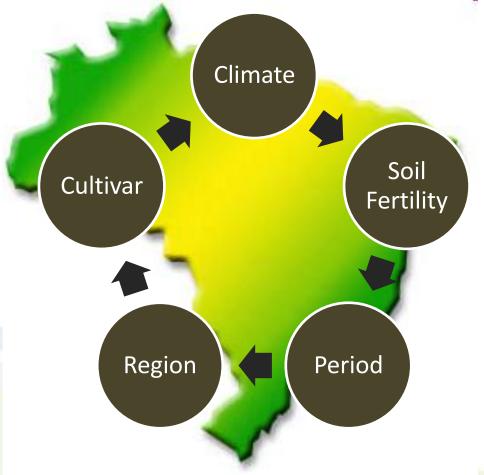
Dosing systems of enzymes ajusted in real time to the substrate...





SOLUTION: Integration of knowledge areas...

In-line dosing systems



R&D Line 1: Variability of raw materials in Brazil?

Perspectives for Enzymes applyied to Animal Nutrition

Needs and opportunities?

- 1. Understand substrates and quantification;
- 2. Understand type of enzymes and quantification (some extent available);
- 3. Understand the working conditions of each individual enzyme;
- Development of new enzymes with potential opportunities for animal nutrition, management, health.

Projects under development

Edital: Chamada 09/2011 - Macroprograma 3 - Finalização de Tecnologias

submetida ao CTI

Macroprograma: Macroprograma 3

Linha Temática: Linha Aberta - MP 3

Tipo da Submissão: Proposta

Estado da Submissão (na data de

impressão - 06/09/2011):

Líder: EVERTON LUIS KRABBE

Instituição do Líder(base corporativa): Centro Nacional de Pesquisa de Suinos e Aves

Instituição do Líder(Na Submissão): Centro Nacional de Pesquisa de Suinos e Aves

Data da Criação: 31/08/2011

Código SEG:

Título do Projeto:

Desenvolvimento de um programa de estabilização oxidativo do farelo de

arroz integral para a alimentação de aves

Sigla: PROGOX FAI

Título em Inglês:

Development of a oxidative stability program of rice bran for poultry

feeding

Data de Início: 01/03/2012

Duração(meses): 24

Web Site:

Palavras-chaves: farelo de arroz integral, estabilidade oxidativa

Edital: Chamada 01/2012 - Macroprogramas 1, 2, 3 e 6

Macroprograma 3 Macroprograma:

Linha Temática: Desenvolvimento e/ou adaptação de metodologias científicas/ferramentas

Tipo da Submissão: Proposta

Estado da Submissão (na

data de impressão -

09/04/2012):

submetida ao CTI

Líder: **EVERTON LUIS KRABBE**

Instituíção do Líder(Na

Submissão):

Centro Nacional de Pesquisa de Suinos e Aves

Data da Criação: 14/03/2012

Código SEG:

Título em Inglês:

DESENVOLVIMENTO DE METODOLOGIAS DE ANÁLISE E CARACTERIZAÇÃO Título do Projeto:

DOS COMPOSTOS ANTINUTRICIONAIS DO MILHO E DO FARELO DE SOJA

BRASILEIROS EMPREGADOS NA ALIMENTAÇÃO DE AVES E SUÍNOS

PNAs Sigla:

DEVELOPMENT OF ANALYSIS METHODS AND CHARACTERIZATION OF

BRAZILIAN CORN AND SOYBEAN MEAL ANTINUTRITIONAL FACTORS

EMPLOYED IN SWINE AND POULTRY DIETS

Data de Início: 01/09/2012

24 Duração(meses):

Web Site:

Palayras-chaves: milho, farelo de soja, fatores antinutricionais, LC-MS/MS

Edital: Chamada 01/2012 - Macroprogramas 1, 2, 3 e 6

Macroprograma: Macroprograma 3

Linha Temática: Linha aberta - reuso de tecnologias - MP3

Tipo da Submissão: Proposta

Estado da Submissão (na data de

impressão - 09/04/2012):

submetida ao CTI

Líder: EVERTON LUIS KRABBE

Instituíção do Líder(Na

Submissão):

Centro Nacional de Pesquisa de Suinos e Aves

Data da Criação: 21/03/2012

Código SEG:

DESENVOLVIMENTO DE UM PROBIÓTICO ENRIQUECIDO COM

Título do Projeto: MICROMINERAIS PARA POEDEIRAS POR FERMENTAÇÃO EM ESTADO

SÓLIDO

Sigla: FES-prob

Título em Inglês:

DEVELOPMENT OF A MICROMINERAL-ENRICHED PROBIOTIC FOR

LAYERS USING SOLID-STATE FERMENTATION

Data de Início: 01/09/2012

Duração(meses): 30

Web Site:

Palavras-chaves: FES, qualidade de ovos, aditivos, S. cerevisiae, aves

Edital: Chamada 01/2012 - Macroprogramas 1, 2, 3 e 6

Macroprograma: Macroprograma 3

Linha Temática: Linha aberta - reuso de tecnologias - MP3

Tipo da Submissão: Proposta

Estado da Submissão (na data de

impressão - 09/04/2012):

submetida ao CTI

Líder: EVERTON LUIS KRABBE

Instituíção do Líder(Na Submissão): Centro Nacional de Pesquisa de Suinos e Aves

Data da Criação: 26/03/2012

Código SEG:

Título do Projeto:

Prospecção da biodiversidade brasileira para seleção de microrganismos

produtores de enzimas através de Fermentação em Estado Sólido

Sigla: Enz-FES

Título em Inglês:

Brazilian biodiversity prospecting for selection of enzyme-producer

microorganisms using Solid-State Fermentation

Data de Início: 01/09/2012

Duração(meses): 24

Web Site:

Palavras-chaves: fungos, leveduras, enzimas, bioma

Thank you,

everton.krabbe@embrapa.br

